34.(湖南•理•18题)如图1,分别是矩形的边的中点,是上的一点,将,分别沿翻折成,,并连结,使得平面平面,,且.连结,如图2. (I)证明:平面平面; (II)当,,时,求直线和平面所成的角; 【解答】解法一:(I)因为平面平面,平面平面,,平面,所以平面,又平面,所以平面平面. (II)过点作于点,连结. 由(I)的结论可知,平面, 所以是和平面所成的角. 因为平面平面,平面平面,, 平面,所以平面,故. 因为,,所以可在上取一点,使,又因为,所以四边形是矩形. 由题设,,,则.所以,, ,. 因为平面,,所以平面,从而. 故,. 又,由得. 故. 即直线与平面所成的角是. 解法二:(I)因为平面平面,平面平面,, 平面,所以平面,从而.又,所以平面.因为平面,所以平面平面. (II)由(I)可知,平面.故可以为原点,分别以直线为轴、轴、轴建立空间直角坐标系(如图), 由题设,,,则, ,,相关各点的坐标分别是, ,,. 所以,. 设是平面的一个法向量, 由得故可取. 过点作平面于点,因为,所以,于是点在轴上. 因为,所以,. 设(),由,解得, 所以. 设和平面所成的角是,则 . 故直线与平面所成的角是. 35.(江苏•理•18题)如图,已知是棱长为3的正方体,点在上,点在上,且。 (I)求证:四点共面;(4分) (II)若点在上,,点在上,,垂足为,求证:面; (Ⅲ)用表示截面和面所成锐二面角大小,求。 【解答】(1)证明:在DD上取一点N使得DN=1,连接CN,EN,显然四边形CFDN是平行四边形,所以DF//CN,同理四边形DNEA是平行四边形,所以EN//AD,且EN=AD,又BC//AD,且AD=BC,所以EN//BC,EN=BC,所以四边形CNEB是平行四边形,所以 CN//BE,所以DF//BE,所以四点共面。 (2)因为所以∽MBG,所以,即,所以MB=1,因为AE=1,所以四边形ABME是矩形,所以EM⊥BB又平面ABBA⊥平面BCCB,且EM在平面ABBA内,所以面 (3)面,所以BF,MH,,所以∠MHE就是截面和面所成锐二面角的平面角,∠EMH=,所以,ME=AB=3,∽MHB,所以3:MH=BF:1,BF=,所以MH=,所以= 36.(江西•理•20题)右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,AAl=4,BBl=2,CCl=3。 (I)设点O是AB的中点,证明:OC∥平面A1B1C1; (II)求二面角B—AC—A1的大小; (Ⅲ)求此几何体的体积; 【解答】解法一: (1)证明:作交于,连. 则. 因为是的中点, 所以. 则是平行四边形,因此有. 平面且平面, 则面. (2)如图,过作截面面,分别交,于,. 作于,连. 因为面,所以,则平面. 又因为,,. 所以,根据三垂线定理知,所以就是所求二面角的平面角. 因为,所以,故, 即:所求二面角的大小为. (3)因为,所以 . . 所求几何体体积为 . 解法二: (1)如图,以为原点建立空间直角坐标系, 则,,,因为是的中点,所以, . 易知,是平面的一个法向量. 因为,平面,所以平面. (2),, 设是平面的一个法向量,则 则,得: 取,. 显然,为平面的一个法向量. 则,结合图形可知所求二面角为锐角. 所以二面角的大小是. (3)同解法一. (责任编辑:admin) |