1、(重庆理)(7)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为 (A) (B) (C) (D) 【解答】可从对立面考虑,即三张价格均不相同, 2、(重庆理)(本小题满分13分,其中(Ⅰ)小问4分,(Ⅱ)小问9分) 某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆元的保险金,对在一年内发生此种事故的每辆汽车,单位可获元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为,,,且各车是否发生事故相互独立,求一年内该单位在此保险中: (Ⅰ)获赔的概率; (Ⅱ)获赔金额的分布列与期望. (18)(本小题13分) 【解答】设表示第辆车在一年内发生此种事故,.由题意知,,独立,且,,. (Ⅰ)该单位一年内获赔的概率为 . (Ⅱ)的所有可能值为,,,. , , , . 综上知,的分布列为
求的期望有两种解法: 解法一:由的分布列得 (元). 解法二:设表示第辆车一年内的获赔金额,, 则有分布列
故. 同理得,. 综上有(元). 3、(四川理)已知一组抛物线,其中a为2,4,6,8中任取的一个数,b为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是 (A) (B) (C) (D) 【解答】选B.这一组抛物线共条,从中任意抽取两条,共有种不同的方法.它们在与直线交点处的切线的斜率.若,有两种情形,从中取出两条,有种取法;若,有三种情形,从中取出两条,有种取法;若,有四种情形,从中取出两条,有种取法;若,有三种情形,从中取出两条,有种取法;若,有两种情形,从中取出两条,有种取法.由分类计数原理知任取两条切线平行的情形共有种,故所求概率为. 4、(四川理)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率. 【解答】本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力。 解:(Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A来算,有 (Ⅱ)可能的取值为 ,,
记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率 所以商家拒收这批产品的概率为 5、(四川文)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 【解答】选B 6、(天津理)(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望. 【解答】本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,. 故取出的4个球均为黑球的概率为. (Ⅱ)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥, 且,. 故取出的4个球中恰有1个红球的概率为. (Ⅲ)可能的取值为.由(Ⅰ),(Ⅱ)得,, .从而. 的分布列为
的数学期望. 7、(天津文)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:
则这堆苹果中,质量不小于120克的苹果数约占苹果总数的 %.70 【解答】由表中可知这堆苹果中,质量不小于120克的苹果数为: 故约占苹果总数的. 8、(天津文)(本小题满分12分)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为红球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; 【解答】本小题主要考查互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)设“从甲盒内取出的2个球均为红球”为事件,“从乙盒内取出的2个球均为红球”为事件.由于事件相互独立,且 ,, 故取出的4个球均为红球的概率是 . (Ⅱ)设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件.由于事件互斥,且 ,. 故取出的4个红球中恰有4个红球的概率为 . 9、(浙江理)已知随机变量服从正态分布,,则( ) A. B. C. D, 【解答】由又 故选A. 10、(浙江理)(15)随机变量的分布列如下:
其中成等差数列,若,则的值是 . 【解答】成等差数列, 有 联立三式得 (责任编辑:admin) |