下面是高中数学老师带来的函数及其表示知识点梳理及高频考点剖析,助力高三理科生高效备战一轮复习! 【核心素养分析】 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 3.了解简单的分段函数,并能简单应用(函数分段不超过三段). 4.培养学生数学抽象、数学运算能力。 ![]() 【重点知识梳理】 知识点1.函数与映射的概念 (1)函数:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. (2)映射:一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射. 知识点2.函数的表示方法 (1)用数学表达式表示两个变量之间的对应关系的方法叫做解析法. (2)用图象表示两个变量之间的对应关系的方法叫做图象法. (3)列出表格表示两个变量之间的对应关系的方法叫做列表法. 知识点3.函数的三要素 (1)函数的三要素:定义域、对应关系、值域. (2)两个函数相等:如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. 知识点4.分段函数 若函数在定义域的不同子集上的对应关系不同,则这种形式的函数叫做分段函数,它是一类重要的函数. 知识点5.复合函数 一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做y=f(g(x))的内层函数. ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 【解析】A中函数为偶函数,则在定义域内均满足f(x)=f(-x),不符合题意;B中,当x=kπ(k∈Z)时,满足f(x)=f(-x),不符合题意;C中,由f(x)=f(-x),得x2-2x=x2+2x,解得x=0,不符合题意;D中,由f(x)=f(-x),得x3-2x=-x3+2x,解得x=0或x=±,满足题意,故选D。 声明: (责任编辑:admin) |