四、最大转速和最小转速问题 例5. 有一水平放置的圆盘,上面放一个劲度系数为k的轻弹簧,其一端固定于轴O上,另一端系着质量为m的物体A,物体A与盘面间最大静摩擦力为Ffm,弹簧原长为L,现将弹簧伸长后置于旋转的桌面上,如图5所示,问:要使物体相对于桌面静止,圆盘转速n的最大值和最小值各是多少? 解析:当转速n较大时,静摩擦力与弹簧弹力同向,即: ① 当转速n较小时,静摩擦力与弹簧弹力反向,即: ② 所以圆盘转速n的最大值和最小值分别为: 。 五、最大加速度问题 例6. 两木块A、B质量分别为m、M,用劲度系数为k的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A压下一段距离静止,释放后A做简谐运动,在A振动过程中,木块B刚好始终未离开地面,求木块A的最大加速度。 解析:撤去外力后,A以未加外力时的位置为平衡位置作简谐运动,当A运动到平衡位置上方最大位移处时,B恰好对地面压力为零,此时A的加速度最大,设为am。 对A:由牛顿第二定律有 对B: 所以,方向向下。 六、最大振幅 例7. 如图7所示,小车质量为M,木块质量为m,它们之间静摩擦力最大值为Ff,轻质弹簧劲度系数为k,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少? 解析:在最大位移处,M和m相对静止,它们具有相同的加速度,所以对整体有: ① 对m有: ② 所以由①②解得:。 七、最大势能问题 例8. 如图8所示,质量为2m的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k的轻质弹簧,弹簧的自由端到小车右端的距离为L0,一个质量为m的小木块从板的右端以初速度v0开始沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。 解:弹簧被压缩至最短时,具有最大弹性势能,设m在M上运动时,摩擦力做的总功产生内能为2E,从初状态到弹簧具有最大弹性势能及从初状态到末状态,系统均满足动量守恒定律,即: ① 由初状态到弹簧具有最大弹性势能,系统满足能量守恒: ② 由初状态到末状态,系统也满足能量守恒且有: ③ 由①②③求得: 从以上各例可以看出,尽管弹簧类问题综合性很强,物理情景复杂,物理过程较多,但只要我们仔细分析物理过程,找出每一现象所对应的物理规律,正确判断各物理量之间的关系,此类问题一定会迎刃而解。 (责任编辑:admin) |