37、(江西理)设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点( ) A.必在圆内 B.必在圆上 C.必在圆外 D.以上三种情形都有可能 【解答】由=得a=2c,b=,所以,所以点到圆心(0,0)的距离为,所以点P在圆内,选A 38、(江西理)(本小题满分12分)设动点到点和的距离分别为和,,且存在常数,使得. (1)证明:动点的轨迹为双曲线,并求出的方程; (2)过点作直线双曲线的右支于两点,试确定的范围,使,其中点为坐标原点. 【解答】解法一:(1)在中,,即, ,即(常数), 点的轨迹是以为焦点,实轴长的双曲线. 方程为:. (2)设, ①当垂直于轴时,的方程为,,在双曲线上. 即,因为,所以. ②当不垂直于轴时,设的方程为. 由得:, 由题意知:, 所以,. 于是:. 因为,且在双曲线右支上,所以 . 由①②知,. 解法二:(1)同解法一 (2)设,,的中点为. ①当时,, 因为,所以; ②当时,. 又.所以; 由得,由第二定义得 . 所以. 于是由得 因为,所以,又, 解得:.由①②知. 39、(江西文)连接抛物线的焦点与点所得的线段与抛物线交于点,设点为坐标原点,则三角形的面积为( ) A. B. C. D. 【解答】线段所在直线方程与抛物线交于则: ,选B 40、(江西文)设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点( ) A.必在圆上 B.必在圆外 C.必在圆内 D.以上三种情形都有可能 【解答】由=得a=2c,b=,所以, 所以点到圆心(0,0)的距离为 , 所以点P在圆内,选C. 41、(江西文)(本小题满分14分)设动点到点和的距离分别为和,,且存在常数,使得. (1)证明:动点的轨迹为双曲线,并求出的方程; (2)如图,过点的直线与双曲线的右支交于两点.问:是否存在,使是以点为直角顶点的等腰直角三角形?若存在,求出的值;若不存在,说明理由. 【解答】(1)在中, (小于的常数) 故动点的轨迹是以,为焦点,实轴长的双曲线. 方程为. (2)方法一:在中,设,,,. 假设为等腰直角三角形,则 由②与③得, 则 由⑤得, , 故存在满足题设条件. 方法二:(1)设为等腰直角三角形,依题设可得 所以,. 则.① 由,可设, 则,. 则.② 由①②得.③ 根据双曲线定义可得,. 平方得:.④ 由③④消去可解得, 故存在满足题设条件. 42、(江苏理)在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为 A. B. C. D. 【解答】由 , 选A 43、(江苏理)在平面直角坐标系中,已知顶点和,顶点在椭圆上,则 . 【解答】利用椭圆定义和正弦定理 得 b=2*4=8 44、(江苏理)(本小题满分14分)如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线,分别与线段和直线交于, (1)若,求的值;(5分) (2)若为线段的中点,求证:为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由。(4分) 【解答】(1)设过C点的直线为,所以,即,设A,=,,因为,所以 ,即, 所以,即所以 (2)设过Q的切线为,,所以,即,它与的交点为M,又,所以Q,因为,所以,所以M,所以点M和点Q重合,也就是QA为此抛物线的切线。 (3)(2)的逆命题是成立,由(2)可知Q,因为PQ轴,所以 因为,所以P为AB的中点。 45、(湖南理)设分别是椭圆()的左、右焦点,若在其右准线上存在 使线段的中垂线过点,则椭圆离心率的取值范围是( ) A. B. C. D. 【解答】由已知P,所以的中点Q的坐标为,由 当时,不存在,此时为中点, 综上得 (责任编辑:admin) |