高中数学竞赛讲义(三) ──函数 一、基础知识 定义1 映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f: A→B为一个映射。 定义2 单射,若f: A→B是一个映射且对任意x, y∈A, x ![]() ![]() 定义3 满射,若f: A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f: A→B是A到B上的满射。 定义4 一一映射,若f: A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1: A→B。 定义5 函数,映射f: A→B中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A, y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3 ![]() 定义6 反函数,若函数f: A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1: A→B叫原函数的反函数,通常写作y=f-1(x). 这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x, y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y= ![]() ![]() ![]() 定理1 互为反函数的两个函数的图象关于直线y=x对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f(x)在区间I上满足对任意的x1, x2∈I并且x1< x2,总有f(x1)<f(x2)(f(x)>f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。 (2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。 (3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。 定义8 如果实数a<b,则数集{x|a<x<b, x∈R}叫做开区间,记作(a,b),集合{x|a≤x≤b,x∈R}记作闭区间[a,b],集合{x|a<x≤b}记作半开半闭区间(a,b],集合{x|a≤x<b}记作半闭半开区间[a, b),集合{x|x>a}记作开区间(a, +∞),集合{x|x≤a}记作半开半闭区间(-∞,a]. 定义9 函数的图象,点集{(x,y)|y=f(x), x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b>0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。 定理3 复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y= ![]() ![]() ![]() 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x-1|= ![]() 【解】 分别画出y=|x-1|和y= ![]() 例2 求函数f(x)= ![]() ![]() 【解】 f(x)= ![]() ![]() 因为|PA|-|PA|≤|AB|= ![]() 所以f(x)max= ![]() 2.函数性质的应用。 例3 设x, y∈R,且满足 ![]() 【解】 设f(t)=t3+1997t,先证f(t)在(-∞,+∞)上递增。事实上,若a<b,则f(b)-f(a)=b3-a3+1997(b-a)=(b-a)(b2+ba+a2+1997)>0,所以f(t)递增。 由题设f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2. 例4 奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)<0,求a的取值范围。 【解】 因为f(x) 是奇函数,所以f(1-a2)=-f(a2-1),由题设f(1-a)<f(a2-1)。 又f(x)在定义域(-1,1)上递减,所以-1<1-a<a2-1<1,解得0<a<1。 例5 设f(x)是定义在(-∞,+∞)上以2为周期的函数,对k∈Z, 用Ik表示区间(2k-1, 2k+1],已知当x∈I0时,f(x)=x2,求f(x)在Ik上的解析式。 【解】 设x∈Ik,则2k-1<x≤2k+1, 所以f(x-2k)=(x-2k)2. 又因为f(x)是以2为周期的函数, 所以当x∈Ik时,f(x)=f(x-2k)=(x-2k)2. 例6 解方程:(3x-1)( ![]() ![]() 【解】 令m=3x-1, n=2x-3,方程化为 m( ![]() ![]() 若m=0,则由①得n=0,但m, n不同时为0,所以m ![]() ![]() ⅰ)若m>0,则由①得n<0,设f(t)=t( ![]() ![]() ⅱ)若m<0,且n>0。同理有m+n=0,x= ![]() 综上,方程有唯一实数解x= ![]() 3.配方法。 例7 求函数y=x+ ![]() 【解】 y=x+ ![]() ![]() ![]() = ![]() ![]() ![]() ![]() 当x=- ![]() ![]() ![]() 4.换元法。 例8 求函数y=( ![]() ![]() ![]() 【解】令 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 所以该函数值域为[2+ ![]() 5.判别式法。 例9 求函数y= ![]() 【解】由函数解析式得(y-1)x2+3(y+1)x+4y-4=0. ① 当y ![]() 所以△=9(y+1)2-16(y-1)2≥0,解得 ![]() 又当y=1时,存在x=0使解析式成立, 所以函数值域为[ ![]() 6.关于反函数。 例10 若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+ ∞)上递增,求证:y=f-1(x)在(-∞,+ ∞)上也是增函数。 【证明】设x1<x2, 且y1=f-1(x1), y2=f-1(x2),则x1=f(y1), x2=f(y2),若y1≥y2,则因为f(x)在(-∞,+ ∞)上递增,所以x1≥x2与假设矛盾,所以y1<y2。 即y=f-1(x)在(-∞,+ ∞)递增。 例11 设函数f(x)= ![]() 【解】 首先f(x)定义域为(-∞,- ![]() ![]() ![]() ![]() ![]() ![]() 所以f(x)在(-∞,- ![]() ![]() 在方程f(x)=f-1(x)中,记f(x)=f-1(x)=y,则y≥0,又由f-1(x)=y得f(y)=x,所以x≥0,所以x,y∈[- ![]() 若x ![]() 同理若x>y也可得出矛盾。所以x=y. 即f(x)=x,化简得3x5+2x4-4x-1=0, 即(x-1)(3x4+5x3+5x2+5x+1)=0, 因为x≥0,所以3x4+5x3+5x2+5x+1>0,所以x=1. 三、基础训练题 1.已知X={-1, 0, 1}, Y={-2, -1, 0, 1, 2},映射f:X→Y满足:对任意的x∈X,它在Y中的象f(x)使得x+f(x)为偶数,这样的映射有_______个。 2.给定A={1,2,3},B={-1,0,1}和映射f:X→Y,若f为单射,则f有_______个;若f为满射,则f有_______个;满足f[f(x)] =f(x)的映射有_______个。 3.若直线y=k(x-2)与函数y=x2+2x图象相交于点(-1,-1),则图象与直线一共有_______个交点。 4.函数y=f(x)的值域为[ ![]() ![]() 5.已知f(x)= ![]() 6.已知f(x)=|x+a|,当x≥3时f(x)为增函数,则a的取值范围是_______。 7.设y=f(x)在定义域( ![]() 8.若函数y= ![]() ![]() ![]() ![]() 9.函数f(x)满足 ![]() ![]() ![]() 10. 函数y= ![]() 11.求下列函数的值域:(1)y= ![]() ![]() ![]() ![]() 12. 已知 ![]() 四、高考水平训练题 1.已知a∈ ![]() 2.设0≤a<1时,f(x)=(a-1)x2-6ax+a+1恒为正值。则f(x)定义域为_______。 3.映射f: {a, b, c, d}→{1,2,3}满足10<f(a)·f(b)·f(c)·f(d)<20,这样的映射f有_______个。 4.设函数y=f(x)(x∈R)的值域为R,且为增函数,若方程f(x)=x解集为P,f[f(x)]=x解集为Q,则P,Q的关系为:P_______Q(填=、 ![]() ![]() 5.下列函数是否为奇函数:(1)f(x)=(x-1) ![]() ![]() ![]() ![]() 6. 设函数y=f(x)(x∈R且x ![]() ![]() 7.函数f(x)= ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 8.函数y=f(x+1)的反函数是y=f-1(x+1),并且f(1)=3997,则f(1998)= _______。 9.已知y=f(x)是定义域为[-6,6]的奇函数,且当x∈[0,3]时是一次函数,当x∈[3,6]时是二次函数,又f(6)=2,当x∈[3,6]时,f(x)≤f(5)=3。求f(x)的解析式。 10.设a>0,函数f(x)定义域为R,且f(x+a)= ![]() 11.设关于x的方程2x2-tx-2=0的两根为α,β(α<β),已知函数f(x)= ![]() ![]() 五、联赛一试水平训练题 1.奇函数f(x)存在函数f-1(x),若把y=f(x)的图象向上平移3个单位,然后向右平移2个单位后,再关于直线y=-x对称,得到的曲线所对应的函数是________. 2.若a>0,a ![]() ![]() 3.若 ![]() ![]() 4.设函数f:R→R满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=________. 5.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5, f(x+1) ≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)= ________. 6. 函数f(x)= ![]() 7. 函数f(x)= ![]() 8. 函数y=x+ ![]() 9.设f(x)= ![]() 对任意的a∈R,记V(a)=max{f(x)-ax|x∈[1, 3]}-min{f(x)-ax|x∈[1, 3]},试求V(a)的最小值。 10.解方程组: ![]() 11.设k∈N+, f: N+→N+满足:(1)f(x)严格递增;(2)对任意n∈N+, 有f[f(n)]=kn,求证:对任意n∈N+, 都有 ![]() ![]() 六、联赛二试水平训练题 1.求证:恰有一个定义在所有非零实数上的函数f,满足:(1)对任意x≠0, f(x)=x·f ![]() 2.设f(x)对一切x>0有定义,且满足:(ⅰ)f(x)在(0,+∞)是增函数;(ⅱ)任意x>0, f(x)f ![]() 3. f:[0,1]→R满足:(1)任意x∈[0, 1], f(x)≥0;(2)f(1)=1;(3)当x, y, x+y∈[0, 1]时,f(x)+f(y)≤f(x+y),试求最小常数c,对满足(1),(2),(3)的函数f(x)都有f(x)≤cx. 4. 试求f(x,y)=6(x2+y2)(x+y)-4(x2+xy+y2)-3(x+y)+5(x>0, y>0)的最小值。 5.对给定的正数p,q∈(0, 1),有p+q>1≥p2+q2,试求f(x)=(1-x) ![]() ![]() 6.已知f: (0,1)→R且f(x)= ![]() 当x∈ ![]() 7.函数f(x)定义在整数集上,且满足f(n)= ![]() 8.函数y=f(x)定义在整个实轴上,它的图象在围绕坐标原点旋转角 ![]() 9.设Q+是正有理数的集合,试构造一个函数f: Q+→Q+,满足这样的条件:f(xf(y))= ![]() 本系列讲座由在人教中数论坛网友“0.1”整理提供,感谢他(她)的分享。 (责任编辑:admin) |