高中学习网-高中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

高中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点学习方法与技巧补课解题技巧学习计划表总结-人教网-高中试卷网-中学学科网

高中数学竞赛讲义(五)

http://www.newdu.com 2018-11-30 人民教育出版社 佚名 参加讨论

    高中数学竞赛讲义(五)
    ──数列
    一、基础知识
    定义1  数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1, a2, a3,…,ana1, a2, a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。
    定理1  若Sn表示{an}的前n项和,则S1=a1, 当n>1时,an=Sn-Sn-1.
    定义2  等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称bac的等差中项,若公差为d, 则a=b-d, c=b+d.
    定理2  等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=;3)an-am=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则an+am=ap+a­q;5)对任意正整数p, q,恒有ap-aq=(p-q)(a2-a1);6)若AB至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.
    定义3  等比数列,若对任意的正整数n,都有,则{an}称为等比数列,q叫做公比。
    定理3  等比数列的性质:1)an=a1qn-1;2)前n项和Sn,当q1时,Sn=;当q=1时,Sn=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则aman=apaq
    定义4  极限,给定数列{an}和实数A,若对任意的>0,存在M,对任意的n>M(nN),都有|an-A|<,则称An→+∞时数列{an}的极限,记作
    定义5  无穷递缩等比数列,若等比数列{an}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为(由极限的定义可得)。
    定理3  第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数nn0成立。
    竞赛常用定理
    定理4  第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切nk的自然数n都成立时(kn0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数nn0成立。
    定理5  对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βn-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则xn=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值确定。
    二、方法与例题
    1.不完全归纳法。
    这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。
    例1  试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。
    【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n.
    例2  已知数列{an}满足a1=,a1+a­2+…+an=n2an, n≥1,求通项an.
    【解】   因为a1=,又a1+a­2=22·a2,
    所以a2=a3=,猜想(n≥1).
    证明;1)当n=1时,a1=,猜想正确。2)假设当nk时猜想成立。
    当n=k+1时,由归纳假设及题设,a1+ a1+…+a1=[(k+1)2-1] ak+1,,
    所以=k(k+2)ak+1,
    即=k(k+2)ak+1,
    所以=k(k+2)ak+1,所以ak+1=
    由数学归纳法可得猜想成立,所以
    例3  设0<a<1,数列{an}满足an=1+a, an-1=a+,求证:对任意nN+,有an>1.
    【证明】  证明更强的结论:1<an≤1+a.
    1)当n=1时,1<a1=1+a,①式成立;
    2)假设n=k时,①式成立,即1<an≤1+a,则当n=k+1时,有
    
    由数学归纳法可得①式成立,所以原命题得证。
    2.迭代法。
    数列的通项an或前n项和Sn中的n通常是对任意nN成立,因此可将其中的n换成n+1或n-1等,这种办法通常称迭代或递推。
    例4  数列{an}满足an+pan-1+qan-2=0, n≥3,q0,求证:存在常数c,使得·an+
    【证明】·an+1+(pan+1+an+2)+=an+2·(-qan)+=
    +an(pqn+1+qan)]=q().
    若=0,则对任意n, +=0,取c=0即可.
    若0,则{+}是首项为,公式为q的等比数列。
    所以+=·qn.
    取·即可.
    综上,结论成立。
    例5  已知a1=0, an+1=5an+,求证:an都是整数,nN+.
    【证明】   因为a1=0, a2=1,所以由题设知当n≥1时an+1>an.
    又由an+1=5an+移项、平方得
           ①
    当n≥2时,把①式中的n换成n-1得,即
           ②
    因为an-1<an+1,所以①式和②式说明an-1, an+1是方程x2-10anx+-1=0的两个不等根。由韦达定理得an+1+ an-1=10an(n≥2).
    再由a1=0, a2=1及③式可知,当nN+时,an都是整数。
    3.数列求和法。
    数列求和法主要有倒写相加、裂项求和法、错项相消法等。
    例6  已知an=(n=1, 2, …),求S99=a1+a2+…+a99.
    【解】 因为an+a100-n=+=
    所以S99=
    例7  求和:+…+
    【解】  一般地,
    
    所以Sn=
    
    
    
    例8  已知数列{an}满足a1=a2=1,an+2=an+1+an, Sn为数列的前n项和,求证:Sn<2。
    【证明】  由递推公式可知,数列{an}前几项为1,1,2,3,5,8,13。
    因为,       ①
    所以。             ②
    由①-②得
    所以
    又因为Sn-2<Sn>0,
    所以Sn, 所以
    所以Sn<2,得证。
    4.特征方程法。
    例9  已知数列{an}满足a1=3, a2=6, an+2=4n+1-4an,求an.
    【解】  由特征方程x2=4x-4得x1=x2=2.
    故设an=(α+βn)·2n-1,其中
    所以α=3,β=0,
    所以an=3·2n-1.
    例10  已知数列{an}满足a1=3, a2=6, an+2=2an+1+3an,求通项an.
    【解】  由特征方程x2=2x+3得x1=3, x2=-1,
    所以an=α·3n+β·(-1)n,其中
    解得α=,β
    所以·3]。
    5.构造等差或等比数列。
    例11  正数列a0,a1,…,an,…满足=2an-1(n≥2)且a0=a1=1,求通项。
    【解】  由=1,
    即
    令bn=+1,则{bn}是首项为+1=2,公比为2的等比数列,
    所以bn=+1=2n,所以=(2n-1)2
    所以an=···a0=
    注:C1·C2·…·Cn.
    例12   已知数列{xn}满足x1=2, xn+1=,nN+, 求通项。
    【解】  考虑函数f(x)=的不动点,由=xx=
    因为x1=2, xn+1=,可知{xn}的每项均为正数。
    又+2≥,所以xn+1(n≥1)。又
    Xn+1-==,              ①
    Xn+1+==,              ②
    由①÷②得。             ③
    又>0,
    由③可知对任意nN+>0且,
    所以是首项为,公比为2的等比数列。
    所以·,所以
    解得·
    注:本例解法是借助于不动点,具有普遍意义。
    三、基础训练题
    1. 数列{xn}满足x1=2, xn+1=Sn+(n+1),其中Sn为{xn}前n项和,当n≥2时,xn=_________.
    2. 数列{xn}满足x1=xn+1=,则{xn}的通项xn=_________.
    3. 数列{xn}满足x1=1,xn=+2n-1(n≥2),则{xn}的通项xn=_________.
    4. 等差数列{an}满足3a8=5a13,且a1>0, Sn为前n项之和,则当Sn最大时,n=_________.
    5. 等比数列{an}前n项之和记为Sn,若S10=10,S30=70,则S40=_________.
    6. 数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a, x2=b, Sn=x1+x2+…+ xn,则S100=_________.
    7. 数列{an}中,Sn=a1+a2+…+an=n2-4n+1则|a1|+|a2|+…+|a10|=_________.
    8. 若,并且x1+x2+…+ xn=8,则x1=_________.
    9. 等差数列{an},{bn}的前n项和分别为SnTn,若,则=_________.
    10. 若n!=n(n-1)…2·1, 则=_________.
    11.若{an}是无穷等比数列,an为正整数,且满足a5+a6=48, log2a2·log2a3+ log2a2·log2a5+ log2a2·log2a6+ log2a5·log2a6=36,求的通项。
    12.已知数列{an}是公差不为零的等差数列,数列{}是公比为q的等比数列,且b1=1, b2=5, b3=17, 求:(1)q的值;(2)数列{bn}的前n项和Sn
    四、高考水平训练题
    1.已知函数f(x)=,若数列{an}满足a1=an+1=f(an)(nN+),则a2006=_____________.
    2.已知数列{an}满足a1=1, an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=.
    3. 若an=n2+, 且{an}是递增数列,则实数的取值范围是__________.
    4. 设正项等比数列{an}的首项a1=, 前n项和为Sn, 且210S30-(210+1)S20+S10=0,则an=_____________.
    5. 已知,则a的取值范围是______________.
    6.数列{an}满足an+1=3an+n(nN+) ,存在_________个a1值,使{an}成等差数列;存在________个a1值,使{an}成等比数列。
    7.已知(nN+),则在数列{an}的前50项中,最大项与最小项分别是____________.
    8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________.
    9. 设{an}是由正数组成的数列,对于所有自然数n, an与2的等差中项等于Sn与2的等比中项,则an=____________.
    10. 在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数.
    11.已知数列{an}中,an0,求证:数列{an}成等差数列的充要条件是
    n≥2)①恒成立。
    12.已知数列{an}和{bn}中有an=an-1bn, bn=(n≥2), 当a1=p, b1=q(p>0, q>0)且p+q=1时,(1)求证:an>0, bn>0且an+bn=1(nN);(2)求证:an+1=;(3)求数列
    13.是否存在常数a, b, c,使题设等式
    1·22+2·32+…+n·(n+1)2=(an2+bn+c)
    对于一切自然数n都成立?证明你的结论。
    五、联赛一试水平训练题
    1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972,这样的数列共有_________个。
    2.设数列{xn}满足x1=1, xn=,则通项xn=__________.
    3. 设数列{an}满足a1=3, an>0,且,则通项an=__________.
    4. 已知数列a0, a1, a2, …, an, …满足关系式(3-an+1)·(6+an)=18,且a0=3,则=__________.
    5. 等比数列a+log23, a+log43, a+log83的公比为=__________.
    6. 各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有__________项.
    7. 数列{an}满足a1=2, a2=6, 且=2,则
    ________.
    8. 数列{an} 称为等差比数列,当且仅当此数列满足a0=0, {an+1-qan}构成公比为q的等比数列,q称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项数最多有__________项.
    9.设h∈N+,数列{an}定义为:a0=1, an+1=。问:对于怎样的h,存在大于0的整数n,使得an=1?
    10.设{ak}k1为一非负整数列,且对任意k≥1,满足aka2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。
    11.求证:存在唯一的正整数数列a1,a2,…,使得
    a1=1, a2>1, an+1(an+1-1)=
    六、联赛二试水平训练题
    1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1, 2,….
    2.设a1, a2,…, an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1; ②|ai-ai+1|≤2, i=1,2,…,n-1。
    试问f(2007)能否被3整除?
    3.设数列{an}和{bn}满足a0=1,b0=0,且
    
    求证:an (n=0,1,2,…)是完全平方数。
    4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1<xi (i=0,1,2,…),
    (1)求证:对具有上述性质的任一数列,总能找到一个n≥1,使≥3.999均成立;
    (2)寻求这样的一个数列使不等式<4对任一n均成立。
    5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项?
    6.设a1=a2=,且当n=3,4,5,…时,an=,
    (ⅰ)求数列{an}的通项公式;(ⅱ)求证:是整数的平方。
    7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n, un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2000,求k的所有可能的值。
    8.求证:存在无穷有界数列{xn},使得对任何不同的m, k,有|xm-xk|≥
    9.已知n个正整数a0,a1,…,an和实数q,其中0<q<1,求证:n个实数b0,b1,…,bn和满足:(1)ak<bk(k=1,2,…,n);
    (2)q<<(k=1,2,…,n);
    (3)b1+b2+…+bn<(a0+a1+…+an).
    本系列讲座由在人教中数论坛网友“0.1”整理提供,感谢他(她)的分享。
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
高中语文
高中数学A版
高中数学B版
高中英语
高中物理
高中化学
高中生物
高中历史
高中政治
高中地理
高中日语、俄语
学习方法
高中竞赛