高中学习网-高中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

高中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点学习方法与技巧补课解题技巧学习计划表总结-人教网-高中试卷网题库网-中学学科网

当前位置: 首页 > 高中数学B版 > 综合辅导 >

谈“点到直线距离公式”的向量推导方法

http://www.newdu.com 2018-11-18 人民教育出版社 佚名 参加讨论
    贵州省黄平县旧州中学 杨胜万  
    在人教大纲版高二数学上册中,关于点到直线距离公式的推导方法,教材介绍了两种推导方法,并详细给出了利用直角三角形的面积公式推导得出点到直线的距离公式的具体过程。其实关于点到直线的距离公式的推导方法,除上述方法之外,还有其它很多方法,在这些方法中,向量法(利用平面向量的有关知识来推导的方法)是一种行之有效的推导方法。其推导思路简单明了、运算量也较小。下面笔者给出向量法推导点到直线的距离的具体过程,以供同行参考:
    已知直线和点为点到直线的距离。现不妨设,则直线的斜率为,其方向向量为,从而易知其法向量,又设点为直线上的任一点(如图所示),于是有:
    
    由平面向量的有关知识,可得:
    
    显然,当时,上述公式仍成立。
    上述推导方法利用了向量的数量积知识来进行推导出了点到直线的距离公式,这是一种比较重要有数学思想方法。我们还可将这种思想方法进一步推广到在立体几何中,如何利用空间向量解决求点到平面的距离问题。
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
高中语文
高中数学A版
高中数学B版
高中英语
高中物理
高中化学
高中生物
高中历史
高中政治
高中地理
高中日语、俄语
学习方法
高中竞赛