高中学习网-高中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

高中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点学习方法与技巧补课解题技巧学习计划表总结-人教网-高中试卷网题库网-中学学科网

当前位置: 首页 > 高中数学B版 > 综合辅导 >

方程在向量中的应用技巧

http://www.newdu.com 2018-11-18 人民教育出版社 佚名 参加讨论
    山东省胶南市第一中学 韩朝泉  
    
    一.平面向量基本定理中方程的应用技巧
    设是平面内的两个不共线向量,是平面内的任意一个向量,按照平面向量基本定理,,而且是唯一确定的.可见,应用平面向量基本定理关键是确定,而方程(组)在确定系数方面具有无可替代的作用,解题时,将确定系数问题转化为方程(组)问题是一个常用技巧.
    1.如图所示,在中,交于点M,设,试用表求
    
    分析:由于点M是AD与BC两条线段的交点,M在这两条线段上的具体位置不能用数量表示,因此,直接用三角形法则,不能将转化为用表示;这时,方程可以发挥重要作用,如果设,那么只需要依据A,M,D三点共线及B,M,C三点共线列出方程组即可得解.
    解析:设,则
      
     由于A,M,D三点共线,所以
     而
     由于C,M,B三点共线,所以,
     由 解得,所以,
    二.方程在向量的坐标运算中的应用技巧
    方程在解决某些向量的坐标运算问题时,常可起到化繁为简的作用.主要用于确定向量的坐标、应用向量平行、垂直的坐标形式等.
    例2.已知
    分析:向量的坐标只与向量的起点,终点坐标有关,因此,只要求出点M和点N的坐标即可.根据条件可以设出点M和点N的坐标,列出两个方程,通过解方程组得到点M和点N的坐标.
    解析
     
     设,则,由,可得
     即,同理可得.所以,
    三.解决向量中参数的有关计算问题
    向量中有些含有参数的问题,在求参数的值,或求参数的范围时,方程起到至关重要的作用.由于参数一般存在于表达式中,因此,在形式上就给布列方程创造了条件,只需将含参数的表达式坐标化,即可得到所需方程(组).
    例3.已知=4,
    (1)求的夹角
    (2)设,在线段上是否存在点M,使,若存在,求出点M的坐标,若不存在,请说明理由.
    分析:(1)将=4,代入已知的式子中,即可解出的值,进而可以解出夹角;整个过程就是一个解方程的过程.
    (2)这是一个探索性的问题,可以假设存在这样的点M,由于点M在线段上,为了确定点M的位置,可以引入参数,令,由的值确定点M的位置;这样,点M是否存在的问题就转化为参数是否存在的问题,将已知条件代入,即转化为方程是否有解的问题.
      解析:(1)
      又因为=4,,即
      
    (2)设存在点M,满足,则
     
     
     ,解得
     
     所以,存在点或点满足题意.
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
高中语文
高中数学A版
高中数学B版
高中英语
高中物理
高中化学
高中生物
高中历史
高中政治
高中地理
高中日语、俄语
学习方法
高中竞赛