1.求导法则: (c)/=0 这里c是常数。即常数的导数值为0。 (xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x) 2.导数的几何物理意义: k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。 V=s/(t) 表示即时速度。a=v/(t) 表示加速度。 3.导数的应用: ①求切线的斜率。 ②导数与函数的单调性的关系 已知 (1)分析 的定义域;(2)求导数 (3)解不等式 ,解集在定义域内的部分为增区间(4)解不等式 ,解集在定义域内的部分为减区间。 我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导。 ③求极值、求最值。 注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。 f/(x0)=0不能得到当x=x0时,函数有极值。 但是,当x=x0时,函数有极值 f/(x0)=0 判断极值,还需结合函数的单调性说明。 4.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 相关推荐: 高二数学复习方法汇总 高二数学高分必备 最新高考资讯、高考政策、考前准备、志愿填报、录取分数线等 高考时间线的全部重要节点 尽在"高考网"微信公众号 (责任编辑:admin) |