高三数学推理与证明思维导图,推理与证明知识点总结。备战高三期末考,时间紧任务重,如何快速的理清复习思路呢,最好的办法就是整理高中数学的思维导图,根据思维导图上知识点的联系性进行有计划的复习,这样才更有效率。高中数学辅导老师整理了高三数学期末考思维导图,推理与证明知识点总结,高考数学复习方法希望能帮助考生理清复习思路。 ![]() 一、高三数学推理与证明考点(限考)概要: 1、推理: (1)合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,称为合情推理。 ①归纳推理: 定义:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。 特点: *归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围; *归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性; *归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上; *归纳是立足于观察、经验、实验和对有限资料分析的基础上,提出带有规律性的结论。 步骤: *对有限的资料进行观察、分析、归纳整理; *提出带有规律性的结论,即猜想; *检验猜想。 ②类比推理: 定义:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。 特点: *类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果; *类比是从一种事物的特殊属性推测另一种事物的特殊属性; *类比的结果是猜测性的不一定可靠,单它却有发现的功能。 步骤: *找出两类对象之间可以确切表述的相似特征; *用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; *检验猜想。 (2)演绎推理: ①定义:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。 ②演绎推理是由一般到特殊的推理; ③“三段论”是演绎推理的一般模式,包括: 大前提——已知的一般结论; 小前提——所研究的特殊情况; 结 论——根据一般原理,对特殊情况得出的判断。 ④“三段论”推理的依据,用集合的观点来理解: 若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。 (3)合情推理与演绎推理的区别与联系: ①归纳是由特殊到一般的推理; ②类比是由特殊到特殊的推理; ③演绎推理是由一般到特殊的推理. ④从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确。 ⑤演绎推理是证明数学结论、建立数学体系的重要思维过程;而数学结论、证明思路的发现,主要靠合情推理. 2、证明: (1)直接证明: ①综合法:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法,其特点是:“由因导果”。 ②分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法,其特点是:“执果索因”。 ③数学归纳法: ⅰ数学归纳法公理: 如果①当n取第一个值 (例如 等)时结论正确; ②假设当 时结论正确,证明当n=k+1时结论也正确; 那么,命题对于从 开始的所有正整数n都成立。 说明: *数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行; *数学归纳法公理是证明有关自然数命题的依据。 (2)间接证明(反证法、归谬法):假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。 用反证法证明一个命题常采用以下步骤: ①假定命题的结论不成立; ②进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾; ③由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; ④肯定原来命题的结论是正确的。 即“反设——归谬——结论” 2017新年来临,将推出#感恩2016许愿2017#“新年说”主题活动,如果你有想说的话,或者喜欢教育头条的内容,赶紧注册关注吧! 相关您感兴趣的高考数学复习方法内容推荐: 1、高中数学学习方法:“一二三四”法则! 2、高中数学平面解析几何学习方法! 3、高中数学公式记忆方法! 4、高中数学12种解题技巧! 快速注册通道 (责任编辑:admin) |