湖南省常德市安乡县第五中学 龚光勇收集整理 1、导数的背景:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 如一物体的运动方程是,其中的单位是米,的单位是秒,那么物体在时的瞬时速度为_____(答:5米/秒) 2、导函数的概念:如果函数在开区间(a,b)内可导,对于开区间(a,b)内的每一个,都对应着一个导数 ,这样在开区间(a,b)内构成一个新的函数,这一新的函数叫做在开区间(a,b)内的导函数,记作 ,导函数也简称为导数。 3、求在处的导数的步骤: (1)求函数的改变量; (2)求平均变化率; (3)取极限,得导数。 4、导数的几何意义:函数在点处的导数的几何意义,就是曲线在点处的切线的斜率,即曲线在点处的切线的斜率是,相应地切线的方程是。特别提醒:(1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条;(2)在求过某一点的切线方程时,要首先判断此点是在曲线上,还是不在曲线上,只有当此点在曲线上时,此点处的切线的斜率才是。比如: (1)P在曲线上移动,在点P处的切线的倾斜角为α,则α的取值范围是______(答:); (2)直线是曲线的一条切线,则实数的值为_______(答:-3或1); (3)已知函数(为常数)图象上处的切线与的夹角为,则点的横坐标为_____(答:0或); (4)曲线在点处的切线方程是______________(答:); (5)已知函数,又导函数的图象与轴交于。①求的值;②求过点的曲线的切线方程(答:①1;②或)。 5、导数的运算法则:(1)常数函数的导数为0,即(C为常数); (2),与此有关的如下:;(3)若有导数,则①;②。比如: (1)已知函数的导数为,则_____(答:); (2)函数的导数为__________(答:); (3)若对任意,,则是______(答:) 6、多项式函数的单调性: (1)多项式函数的导数与函数的单调性: ①若,则为增函数;若,则为减函数;若恒成立,则为常数函数;若的符号不确定,则不是单调函数。 ②若函数在区间()上单调递增,则,反之等号不成立;若函数在区间()上单调递减,则,反之等号不成立。比如: (1)函数,其中为实数,当时,的单调性是______(答:增函数); (2)设函数在上单调函数,则实数的取值范围______(答:); (3)已知函数为常数)在区间上单调递增,且方程的根都在区间内,则的取值范围是____________(答:); (4)已知,,设,试问是否存在实数,使在上是减函数,并且在上是增函数?(答:) (2)利用导数求函数单调区间的步骤:(1)求;(2)求方程的根,设根为;(3)将给定区间分成n+1个子区间,再在每一个子区间内判断的符号,由此确定每一子区间的单调性。 如设函数在处有极值,且,求的单调区间。(答:递增区间(-1,1),递减区间) 7、函数的极值: (1)定义:设函数在点附近有定义,如果对附近所有的点,都有,就说是函数的一个极大值。记作=,如果对附近所有的点,都有,就说是函数的一个极小值。记作=。极大值和极小值统称为极值。 (2)求函数在某个区间上的极值的步骤:(i)求导数;(ii)求方程的根;(iii)检查在方程的根的左右的符号:“左正右负”在处取极大值;“左负右正”在处取极小值。特别提醒: ①是极值点的充要条件是点两侧导数异号,而不仅是=0,=0是为极值点的必要而不充分条件。 ②给出函数极大(小)值的条件,一定要既考虑,又要考虑检验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记! 如(1)函数的极值点是 A、极大值点 B、极大值点 C、极小值点 D、极小值点(答:C);(2)已知函数有极大值和极小值,则实数的取值范围是_____(答:或);(3)函数处有极小值10,则a+b的值为____(答:-7);(4)已知函数在区间[-1,2 ]上是减函数,那么b+c有最___值___(答:大,) 8、函数的最大值和最小值: (1)定义:函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”。 (2)求函数在[]上的最大值与最小值的步骤:(1)求函数在()内的极值(极大值或极小值);(2)将的各极值与,比较,其中最大的一个为最大值,最小的一个为最小值。 如(1)函数在[0,3]上的最大值、最小值分别是______(答:5;);(2)用总长14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m。那么高为多少时容器的容积最大?并求出它的最大容积。(答:高为1.2米时,容积最大为) 特别注意:(1)利用导数研究函数的单调性与最值(极值)时,要注意列表!(2)要善于应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题。比如: (1)是的导函数,的图象如右图所示,则的图象只可能是 ( 答:D ) (2)方程的实根的个数为______(答:1); (3)已知函数,抛物线,当时,函数的图象在抛物线的上方,求的取值范围(答:)。 (责任编辑:admin) |