卢介景 从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。 在数学史上,贯穿着矛盾的斗争与解决。当矛盾激化到涉及整个数学的基础时,就会产生数学危机。而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。 数学的发展就经历过三次关于基础理论的危机。 一、第一次数学危机 从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。它是一个唯心主义学派,兴旺的时期为公元前500年左右。他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。 整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。为了满足这些简单的度量需要,就要用到分数。于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。 有理数有一种简单的几何解释。在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。以q为分母的分数,可以用每一单位间隔分为q等分的点表示。于是,每一个有理数都对应着直线上的一个点。 古代数学家认为,这样能把直线上所有的点用完。但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。无理数的发现,是毕氏学派的最伟大成就之一,也是数学史上的重要里程碑。 无理数的发现,引起了第一次数学危机。首先,对于全部依靠整数的毕氏哲学,这是一次致命的打击。其次,无理数看来与常识似乎相矛盾。在几何上的对应情况同样也是令人惊讶的,因为与直观相反,存在不可通约的线段,即没有公共的量度单位的线段。由于毕氏学派关于比例定义假定了任何两个同类量是可通约的,所以毕氏学派比例理论中的所有命题都局限在可通约的量上,这样,他们的关于相似形的一般理论也失效了。 “逻辑上的矛盾”是如此之大,以致于有一段时间,他们费了很大的精力将此事保密,不准外传。但是人们很快发现不可通约性并不是罕见的现象。泰奥多勒斯指出,面积等于3、5、6、……17的正方形的边与单位正方形的边也不可通约,并对每一种情况都单独予以了证明。随着时间的推移,无理数的存在逐渐成为人所共知的事实。 诱发第一次数学危机的一个间接因素是之后“芝诺悖论”的出现,它更增加了数学家们的担忧:数学作为一门精确的科学是否还有可能?宇宙的和谐性是否还存在? 在大约公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中,并且和狄德金于1872年绘出的无理数的现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微炒之处。 第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有特殊地位。同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。这是数学思想上的一次革命,是第一次数学危机的自然产物。 回顾在此以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。例如,泰勒斯预测日食、利用影子计算金字塔高度、测量船只离岸距离等等,都是属于计算技术范围的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,也就继续走着以算为主,以用为主的道路。而由于第一次数学危机的发生和解决,希腊数学则走上完全不同的发展道路,形成了欧几里得《原本》的公理体系与亚里士多德的逻辑体系,为世界数学作出了另一种杰出的贡献。 但是,自此以后希腊人把几何看成了全部数学的基础,把数的研究隶属于形的研究,割裂了它们之间的密切关系。这样做的最大不幸是放弃了对无理数本身的研究,使算术和代数的发展受到很大的限制,基本理论十分薄溺。这种畸形发展的局面在欧洲持续了2000多年。 (责任编辑:admin) |