二、自觉架起数学知识的过渡桥梁 1.把握好集合的概念、性质 集合知识是由初中向高中知识过渡的第一座桥梁。 首先,集合的表法使初中所学的自然数集、有理数集、实数集等有关的知识的表示更为简炼,从而简化了后面复杂问题的表述;其次,集合间的关系运算可以更好地帮助我们理解新学的知识,例如对不等式的解或方程组的解的理解;第三,集合作为一种数学思想渗透于今后所要学习的许多知识中。因此在高中伊始学好有关集合的知识是十分重要的。 2.加强联想与类比 高中知识与初中知识之间的联系是十分密切的。高中的很多知识可以通过降维、降幂等形式转化为初中的有关知识,但这需要我们能将它们加以类比、联想。 以几何为例,初中平面几何中我们有过证明正三角形内任意一点到三边的距离和等于三角形的高,通过面积和相等很容易证明。 类比高中立体几何,我们能否证明一个正面体内任意一点到四个面的距离和等于该四面体的高呢? 其实同学们能够看出这个问题与上面平面几何的问题是十分类似的。这里是将二维的问题推广到三维。二维的问题可以用面积解决,三维的问题我们能用什么办法呢?也许用求体积的方法?有兴趣的同学可以试一试。 当然,联想、类比是以对知识的理解与掌握为前提的。 3.深化对数学计算的认识 数学计算在中学各个阶段的学习要求有所不同。高中阶段要求的不再是简单的应用运算法则进行运算,而是要求在计算中掌握计算的方法,理解算理,如构造法、拆项法、变量替换法、数学归纳法等的选择与运用。 例如当我们学习数列求和时遇到这样的问题:“求1!+2! 2+3! 3+.。。 . . .+n! n的和”。显然利用公式是无能为力的。这就需要我们构造算法,不妨从通项n! n入手,找出它与(n+1)!、n! 的关系,不难发现 n! n=(n+1)!-n!,这样运用拆项法解决了求此和的问题。 (责任编辑:admin) |