力学综合型 力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高。 具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及到运动学、动力学、功能关系等多个规律的综合运用。 应试策略 1. 对于多体问题,要灵活选取研究对象,善于寻找相互联系。选取研究对象和寻找相互联系是求解多体问题的两个关键。选取研究对象需根据 不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。 2. 对于多过程问题,要仔细观察过程特征,妥善运用物理规律。观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参 量等,以便运用相应的物理规律逐个进行研究。至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。 3.对于含有隐含条件的问题,要注重审题,深究细琢,努力挖掘隐含条件。注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键.通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。 4.对于存在多种情况的问题,要认真分析制约条件,周密探讨多种情况。解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。 5.对于数学技巧性较强的问题,要耐心细致寻找规律,熟练运用数学方法。耐心寻找规律、选取相应的数学方法是关键.求解物理问题,通常采用的数学方法有:方程法、比例法、数列法、不等式法、函数极值法、微元分析法、图象法和几何法等,在众多数学方法的运用上必须打下扎实的基础。 6.对于有多种解法的问题,要开拓思路避繁就简,合理选取最优解法。避繁就简、选取最优解法是顺利解题、争取高分的关键,特别是在受考试时间限制的情况下更应如此。这就要求我们具有敏捷的思维能力和熟练的解题技巧,在短时间内进行斟酌、比较、选择并作出决断.当然,作为平时的解题训练,尽可能地多采用几种解法,对于开拓解题思路是非常有益的。 带电粒子运动型 带电粒子运动型计算题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场区。近年来高考重点就是受力情况和运动规律分析求解,周期、半径、轨迹、速度、临界值等.再结合能量守恒和功能关系进行综合考查。 应试策略 1.正确分析带电粒子的受力及运动特征是解决问题的前提: ① 带电粒子在复合场中做什么运动,取决于带电粒子所受的合外力及初始状态的速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析,当带电粒子在复合场中所受合外力为零时,做匀速直线运动(如速度选择器)。 ② 带电粒子所受的重力和电场力等值反向,洛伦磁力提供向心力,带电粒子在垂直于磁场的平面内做匀速圆周运动。 ③ 带电粒子所受的合外力是变力,且与初速度方向不在一条直线上,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程可能由几种不同的运动阶段组成。 2.灵活选用力学规律是解决问题的关键 ① 当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解。 ② 当带电粒子在复合场中做匀速圆周运动时往往应用牛顿第二定律和平衡条件列方程联立求解。 ③ 当带电粒子在复合场中做非匀变 速曲线运动时,应选用动能定理或能量守恒定律列方程求解。 3.说明:由于带电粒子在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。 电磁感应型 电磁感应是高考考查的重点和热点,命题频率较高的知识点有:感应电流的产生条件、方向的判定和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题.从计算题型看,主要考查电磁感应现象与直流电路、磁场、力学、能量转化相联系的综合问题,主要以大型计算题的形式考查。 (责任编辑:admin) |