不等式的解法: (1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论: (2)绝对值不等式:若,则;; 注意: (1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有: ⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值; (2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。 (3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。 (4)分式不等式的解法:通解变形为整式不等式; (5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。 (6)解含有参数的不等式: 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性. ②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论. ③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论。 (责任编辑:admin) |