高中学习网-高中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

高中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点学习方法与技巧补课解题技巧学习计划表总结-人教网-高中试卷网题库网-中学学科网

当前位置: 首页 > 高中数学A版 > 综合辅导 >

2018高考数学冲刺,学霸常用的万能解题方法

http://www.newdu.com 2018-11-27 三好网 佚名 参加讨论

    只要是学霸,那他数学成绩一定很不错。究其原因,学霸会做题,有一套正确的解题方法,小编整理出2018高考数学冲刺,学霸常用的万能解题方法如下:
    
    1.解决绝对值问题
    主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
    具体转化方法有:
    ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
    ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
    ③两边平方法:适用于两边非负的方程或不等式。
    ④几何意义法:适用于有明显几何意义的情况。
    2.因式分解
    根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
    提取公因式
    选择用公式
    十字相乘法
    分组分解法
    拆项添项法
    3.配方法
    利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:
    
    4.换元法
    解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
    设元→换元→解元→还元
    5.待定系数法
    待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设 ②列 ③解 ④写
    6.复杂代数等式
    复杂代数等式型条件的使用技巧:左边化零,右边变形。
    ①因式分解型:
    (-----)(----)=0     两种情况为或型
    ②配成平方型:
    (----)2+(----)2=0   两种情况为且型
    7数学中两个最伟大的解题思路
    (1)求值的思路列欲求值字母的方程或方程组
    (2)求取值范围的思路列欲求范围字母的不等式或不等式组
    8.化简二次根式
    基本思路是:把√m化成完全平方式。即:
    
    9.观察法
    
    10.代数式求值
    方法有:
    (1)直接代入法
    (2)化简代入法
    (3)适当变形法(和积代入法)
    注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
    11.解含参方程
    方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:
    (1)按照类型求解
    (2)根据需要讨论
    (3)分类写出结论
    12.恒相等成立的有用条件
    (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
    (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
    13.恒不等成立的条件
    由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
    14.平移规律
    图像的平移规律是研究复杂函数的重要方法。平移规律是:
    
    15.图像法
    讨论函数性质的重要方法是图像法——看图像、得性质。
    定义域  图像在X轴上对应的部分
    值  域  图像在Y轴上对应的部分
    单调性  从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。
    最  值  图像最高点处有最大值,图像最低点处有最小值
    奇偶性  关于Y轴对称是偶函数,关于原点对称是奇函数
    16.函数、方程、不等式间的重要关系
    方程的根
    ▼
    函数图像与x轴交点横坐标
    ▼
    不等式解集端点
    17.一元二次不等式的解法
    一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:
    二次化为正
    ▼
    判别且求根
    ▼
    画出示意图
    ▼
    解集横轴中
    18.一元二次方程根的讨论
    一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:
    题意
    ▼
    二次函数图像
    ▼
    不等式组
    不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。
    19.基本函数在区间上的值域
    我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:
    (1)定义域没有特别限制时---记忆法或结论法;
    (2)定义域有特别限制时---图像截断法,一般思路是:
    画出图像
    ▼
    截出一断
    ▼
    得出结论
    20.最值型应用题的解法
    应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:
    设变量
    ▼
    列函数
    ▼
    求最值
    ▼
    写结论
    21.穿线法
    穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:
    首项化正
    ▼
    求根标根
    ▼
    右上起穿
    ▼
    奇穿偶回
    注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法
    文章来源于网络,由编辑整理,如有侵权请及时联系删除。
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
高中语文
高中数学A版
高中数学B版
高中英语
高中物理
高中化学
高中生物
高中历史
高中政治
高中地理
高中日语、俄语
学习方法
高中竞赛