高中学习网-高中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

高中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点学习方法与技巧补课解题技巧学习计划表总结-人教网-高中试卷网题库网-中学学科网

当前位置: 首页 > 高中数学A版 > 综合辅导 >

高一数学必修一各章知识点总结

http://www.newdu.com 2018-11-27 三好网 佚名 参加讨论

    一、集合有关概念
    
    1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
    2、集合的中元素的三个特性:
    1.元素的确定性;2.元素的互异性;3.元素的无序性
    说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
    (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
    (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
    (4)集合元素的三个特性使集合本身具有了确定性和整体性。
    3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
    1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    2.集合的表示方法:列举法与描述法。
    注意啊:常用数集及其记法:
    非负整数集(即自然数集)记作:N
    正整数集N*或N+整数集Z有理数集Q实数集R
    关于“属于”的概念
    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
    列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
    描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
    ①语言描述法:例:{不是直角三角形的三角形}
    ②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
    4、集合的分类:
    1.有限集含有有限个元素的集合
    2.无限集含有无限个元素的集合
    3.空集不含任何元素的集合例:{x|x2=-5}
    二、集合间的基本关系
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系(5≥5,且5≤5,则5=5)
    实例:设A={x|x2-1=0}B={-1,1}“元素相同”
    结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
    ①任何一个集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同时BíA那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的真子集。
    三、集合的运算
    1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
    记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
    2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
    3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
    A∪φ=A,A∪B=B∪A.
    4、全集与补集
    (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
    记作:CSA即CSA={x|x?S且x?A}
    S
    CsA
    A
    (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
    (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
    二、函数的有关概念
    1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
    注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.
    定义域补充
    能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.
    (又注意:求出不等式组的解集即为函数的定义域。)
    构成函数的三要素:定义域、对应关系和值域
    再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)
    (见课本21页相关例2)
    值域补充
    (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
    3.函数图象知识归纳
    (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.
    C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}
    图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
    (2)画法
    A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.
    B、图象变换法(请参考必修4三角函数)
    高一数学必修1常用变换方法有三种,即平移变换、伸缩变换和对称变换
    (3)作用:
    1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
    发现解题中的错误。
    4.快去了解区间的概念
    (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
    5.什么叫做映射
    一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”
    给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
    说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
    常用的函数表示法及各自的优点:
    1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2解析法:必须注明函数的定义域;3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4列表法:选取的自变量要有代表性,应能反映定义域的特征.
    注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
    补充一:分段函数(参见课本P24-25)
    在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
    补充二:复合函数
    如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。
    例如:y=2sinXy=2cos(X2+1)
    7.函数单调性
    (1).增函数
    设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
    如果对于区间D上的任意两个自变量的值x1,x2,当x1
    注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
    2必须是对于区间D内的任意两个自变量x1,x2;当x1
    (2)图象的特点
    如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
    (3).函数单调区间与单调性的判定方法
    (A)定义法:
    1任取x1,x2∈D,且x1
    (B)图象法(从图象上看升降)_
    (C)复合函数的单调性
    复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:
    函数
    单调性
    u=g(x)
    增
    增
    减
    减
    y=f(u)
    增
    减
    增
    减
    y=f[g(x)]
    增
    减
    减
    增
    注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2、还记得我们在选修里学习简单易行的导数法判定单调性吗?
    8.函数的奇偶性
    (1)偶函数
    一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
    (2)奇函数
    一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
    注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
    2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
    (3)具有奇偶性的函数的图象的特征
    偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
    总结:利用定义判断函数奇偶性的格式步骤:1首先确定函数的定义域,并判断其定义域是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
    注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.
    9、函数的解析表达式
    (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
    (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)
    10.函数最大(小)值(定义见课本p36页)
    1利用二次函数的性质(配方法)求函数的最大(小)值2利用图象求函数的最大(小)值3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
    第二章基本初等函数
    一、指数函数
    (一)指数与指数幂的运算
    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
    当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
    当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
    注意:当是奇数时,,当是偶数时,
    2.分数指数幂
    正数的分数指数幂的意义,规定:
    0的正分数指数幂等于0,0的负分数指数幂没有意义
    指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
    3.实数指数幂的运算性质
    (1)?;
    (2);
    (3).
    (二)指数函数及其性质
    1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
    注意:指数函数的底数的取值范围,底数不能是负数、零和1.
    2、指数函数的图象和性质
    a>1
    0
    图象特征
    函数性质
    向x、y轴正负方向无限延伸
    函数的定义域为R
    图象关于原点和y轴不对称
    非奇非偶函数
    函数图象都在x轴上方
    函数的值域为R+
    函数图象都过定点(0,1)
    自左向右看,
    图象逐渐上升
    自左向右看,
    图象逐渐下降
    增函数
    减函数
    在第一象限内的图象纵坐标都大于1
    在第一象限内的图象纵坐标都小于1
    在第二象限内的图象纵坐标都小于1
    在第二象限内的图象纵坐标都大于1
    图象上升趋势是越来越陡
    图象上升趋势是越来越缓
    函数值开始增长较慢,到了某一值后增长速度极快;
    函数值开始减小极快,到了某一值后减小速度较慢;
    注意:利用函数的单调性,结合图象还可以看出:
    (1)在[a,b]上,值域是或;
    (2)若,则;取遍所有正数当且仅当;
    (3)对于指数函数,总有;
    (4)当时,若,则;
    二、对数函数
    (一)对数
    1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)
    说明:1注意底数的限制,且;
    2;
    3注意对数的书写格式.
    两个重要对数:
    1常用对数:以10为底的对数;
    2自然对数:以无理数为底的对数的对数.
    对数式与指数式的互化
    对数式指数式
    对数底数←→幂底数
    对数←→指数
    真数←→幂
    (二)对数的运算性质
    如果,且,,,那么:
    1?+;
    2-;
    3.
    注意:换底公式
    (,且;,且;).
    利用换底公式推导下面的结论(1);(2).
    (二)对数函数
    1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
    注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。
    如:,都不是对数函数,而只能称其为对数型函数.
    2对数函数对底数的限制:,且.
    2、对数函数的性质:
    a>1
    0
    图象特征
    函数性质
    函数图象都在y轴右侧
    函数的定义域为(0,+∞)
    图象关于原点和y轴不对称
    非奇非偶函数
    向y轴正负方向无限延伸
    函数的值域为R
    函数图象都过定点(1,0)
    自左向右看,
    图象逐渐上升
    自左向右看,
    图象逐渐下降
    增函数
    减函数
    第一象限的图象纵坐标都大于0
    第一象限的图象纵坐标都大于0
    第二象限的图象纵坐标都小于0
    第二象限的图象纵坐标都小于0
    (三)幂函数
    1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
    2、幂函数性质归纳.
    (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);
    (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
    (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
    第三章函数的应用
    一、方程的根与函数的零点
    1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
    2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
    方程有实数根函数的图象与轴有交点函数有零点.
    3、函数零点的求法:
    求函数的零点:
    1(代数法)求方程的实数根;
    2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
    4、二次函数的零点:
    二次函数.
    1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
    2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
    3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
      
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
高中语文
高中数学A版
高中数学B版
高中英语
高中物理
高中化学
高中生物
高中历史
高中政治
高中地理
高中日语、俄语
学习方法
高中竞赛