高二数学备考:数学解析几何中求参数取值范围的方法一(2)
http://www.newdu.com 2025/05/21 06:05:27 新东方网 佚名 参加讨论
y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得 x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a ∴ -a2-b2a ≤ x0 ≤ a2-b2a 例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 ( ) A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0) 由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0 ∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立 又∵ y02≥0 而 2+ y028 最小值为2 ∴a≤2 选( B ) (责任编辑:admin) |