高中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点学习方法与技巧补课解题技巧学习计划表总结-人教网-高中试卷网题库网-中学学科网

首页 > 高中数学A版 > 解题技巧 >

斐波那契数列的通项公式推导


    斐波那契数列的通项公式推导
    山西省原平市原平一中 任所怀
    做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。
    下面我们就由递推推导通项的问题,进行对比分析。
    例1 在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题)
    分析:此题可分两步来进行,首先由构造一个等比数列,其中,并写出的通项;然后利用,两边同除以,由累加法,就可求出数列的通项。
    解:   
    设,则)所以数列为等比数列,且首项为,公比为3。所以
    于是有,两边都除以
    设,则有
    由累加法可得
    因为 所以
    于是有
    总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。
    下面我们来研究一下著名的斐波那契数列的通项。
    已知数列,其中,求数列的通项。
    解:首先我们要构造一个等比数列,于是设
    则有。                 (1)
    则由已知    (2)
    对照(1)(2)两式得解得  或  
    我们取前一解,就会有
    设,则有
    所以数列为等比数列,首项为,公比为
    所以 。即      (3)
    再次构造等比数列,设
    则有
    对照(3)式,可得所以 x=.
    于是有
    设,则有数列为等比数列,首项为,公比为,于是=
    所以有
    作者简介:任所怀,性别男,山西省原平市原平一中数学教师。生于1973年9月10日,主要致力于中学数学教学研究。
     (责任编辑:admin)