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1.
Prove that the following assertion is true for 
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, and that it is false for every other natural number 
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: If 
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 are arbitrary real numbers, then
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2.
Consider a convex polyhedron 
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 with nine vertices 
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, …, 
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; let 
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 be the polyhedron obtained from 
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 by a translation that moves vertex 
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 to 
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 (i = 2, 3, …, 9). Prove that at least two of the polyhedra 
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, …, 
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 have an interior point in common.
3.
Prove that the set of integers of the form 
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 (k = 2, 3, …) contains an infinite subset in which every two members are relatively prime.
4.
All the faces of tetrahedron ABCD are acute-angled triangles. We consider all closed polygonal paths of the form XYZTX defined as follows: X is a point on edge AB distinct from A and B; similarly, Y, Z, T are interior points of edges BC, CD, DA, respectively. Prove:
(a)
If 
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, then among the polygonal paths, there is none of minimal length.
(b)
If 
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, then there are infinitely many shortest polygonal paths, their common length being 
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5.
Prove that for every natural number m, there exists a finite set S of points in a plane with the following property: For every point A in S, there are exactly m points in S which are at unit distance from A.

6.
Let 
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 (i, j = 1, 2, …, n) be a square matrix whose elements are non-negative integers. Suppose that whenever an element 
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, the sum of the elements in the i-th row and the j-th column is greater than or equal to n. Prove that the sum of all the elements of the matrix is greater than pr equal to 
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