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1.
Let ABCD be a parallelogram with side lengths 
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. If (ABD is acute, prove that the four circles of radius 1 with centres A, B, C, D cover the parallelogram if and only if 
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2.
Prove that if one and only one edge of a tetrahedron is greater than 1, then its volume is smaller than or equal to 
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3.
Let k, m, n be natural numbers such that 
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 is a prime greater than 
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. Let 
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. Prove that the product 
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 is divisible by the product 
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4.
Let 
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 and 
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 be any two acute-angled triangles. Consider all triangles ABC that are similar to 
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 (so that vertices 
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 correspond to vertices A, B, C, respectively) and circumscribed about triangle 
[image: image17.wmf]000

ABC

 (where 
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 lies on BC, 
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 on CA, and 
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 on AB). Of all such possible triangles, determine the one with maximum area, and construct it.
5.
Consider the sequence 
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in which 
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 are real numbers not all equal to zero. Suppose that an infinite number of terms of the sequence 
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 are equal to zero. Find all natural numbers n for which 
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6.
In a sports contest, there were m medals awarded on n successive days (
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). On the first day, one medal and 
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 of the remaining 
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 medals were awarded. On the second day, two medals and 
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 of the now remaining medals were awarded; and so on. On the n-th and last day, the remaining n medals were awarded. How many days did the contest last, and how many medals were awarded altogether?
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