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1.
Determine all values x in the interval 
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2.
Consider the system of equations
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with unknowns 
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. The coefficients satisfy the conditions:
(a)
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 are positive numbers;
(b)
the remaining coefficients are negative numbers;
(c)
in each equation, the sum of the coefficients is positive.
Prove that the given system has only the solution 
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3.
Given the tetrahedron ABCD whose edges AB and CD have lengths a and b respectively. The distance between the skew lines AB and CD is d, and the angle between them is 
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. Tetrahedron ABCD is divided into two solids by plane 
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, parallel to lines AB and CD. The ratio of the distances of 
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 from AB and CD is equal to k. Compute the ratio of the volumes of the two solids obtained.
4.
Find all sets of four real numbers 
[image: image14.wmf]1

x

, 
[image: image15.wmf]2

x

, 
[image: image16.wmf]3

x

, 
[image: image17.wmf]4

x

 such that the sum of any one and the product of the other three is equal to 2.
5.
Consider (OAB with acute angle (AOB. Through a point 
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 perpendiculars are drawn to OA and OB, the feet of which are P and Q respectively. The point of intersection of the altitudes of (OPQ is H. What is the locus of H if M is permitted to range over (a) the side AB, (b) the interior of (OAB?
6.
In a plane a set of n points (
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) is given. Each pair of points is connected by a segment. Let d be the length of the longest of these segments. We define a diameter of the set to be any connecting segment of length d. Prove that the number of diameters of the given set is at most n.
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