高中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点学习方法与技巧补课解题技巧学习计划表总结-人教网-高中试卷网题库网-中学学科网

首页 > 高中数学A版 > 综合辅导 >

高中数学诱导公式大合集诱导公式记忆口诀


      高中数学诱导公式大合集诱导公式记忆口诀。诱导公式是指三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数的公式。高中数学诱导公式大合集诱导公式有六组共54个。
    高考数学诱导公式大全
    高中数学诱导公式大合集常用的诱导公式有以下几组:
    公式一:
    设α为任意角,终边相同的角的同一三角函数的值相等:
    sin(2kπ+α)=sinα (k∈Z)
    cos(2kπ+α)=cosα (k∈Z)
    tan(2kπ+α)=tanα (k∈Z)
    cot(2kπ+α)=cotα (k∈Z)
    公式二:
    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    公式三:
    任意角α与 -α的三角函数值之间的关系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    公式四:
    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    公式五:
    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    公式六:
    π/2±α及3π/2±α与α的三角函数值之间的关系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)
    注意:在做题时,将a看成锐角来做会比较好做。
    诱导公式记忆口诀
    ※规律总结※
    上面这些诱导公式可以概括为:
    对于π/2*k ±α(k∈Z)的三角函数值,
    ①当k是偶数时,得到α的同名函数值,即函数名不改变;
    ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
    (奇变偶不变)
    然后在前面加上把α看成锐角时原函数值的符号。
    (符号看象限)
    例如:
    sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
    当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
    所以sin(2π-α)=-sinα
    上述的记忆口诀是:
    奇变偶不变,符号看象限。
    公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
    所在象限的原三角函数值的符号可记忆
    水平诱导名不变;符号看象限。
    各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
    这十二字口诀的意思就是说:
    第一象限内任何一个角的四种三角函数值都是“+”;
    第二象限内只有正弦是“+”,其余全部是“-”;
    第三象限内切函数是“+”,弦函数是“-”;
    第四象限内只有余弦是“+”,其余全部是“-”.
    上述记忆口诀,一全正,二正弦,三内切,四余弦
    还有一种按照函数类型分象限定正负:
    函数类型 第一象限 第二象限 第三象限 第四象限
    正弦 ...........+............+............—............—........
    余弦 ...........+............—............—............+........
    正切 ...........+............—............+............—........
    余切 ...........+............—............+............—........
    同角三角函数基本关系
    同角三角函数的基本关系式
    倒数关系:
    tanα·cotα=1
    sinα·cscα=1
    cosα·secα=1
    商的关系:
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    平方关系:
    sin^2(α)+cos^2(α)=1
    1+tan^2(α)=sec^2(α)
    1+cot^2(α)=csc^2(α)
    同角三角函数关系六角形记忆法
    六角形记忆法:(参看图片或参考资料链接)
    构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
    (1)倒数关系:对角线上两个函数互为倒数;
    (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
    (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
    (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
    两角和差公式
    两角和与差的三角函数公式
    sin(α+β)=sinαcosβ+cosαsinβ
    sin(α-β)=sinαcosβ-cosαsinβ
    cos(α+β)=cosαcosβ-sinαsinβ
    cos(α-β)=cosαcosβ+sinαsinβ
    tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
    二倍角公式
    二倍角的正弦、余弦和正切公式(升幂缩角公式)
    sin2α=2sinαcosα
    cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
    tan2α=2tanα/[1-tan^2(α)]
    半角公式
    半角的正弦、余弦和正切公式(降幂扩角公式)
    sin^2(α/2)=(1-cosα)/2
    cos^2(α/2)=(1+cosα)/2
    tan^2(α/2)=(1-cosα)/(1+cosα)
    另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
    万能公式
    sinα=2tan(α/2)/[1+tan^2(α/2)]
    cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
    tanα=2tan(α/2)/[1-tan^2(α/2)]
    万能公式推导
    附推导:
    sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
    (因为cos^2(α)+sin^2(α)=1)
    再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
    然后用α/2代替α即可。
    同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
    三倍角公式
    三倍角的正弦、余弦和正切公式
    sin3α=3sinα-4sin^3(α)
    cos3α=4cos^3(α)-3cosα
    tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
    三倍角公式推导
    附推导:
    tan3α=sin3α/cos3α
    =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
    =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
    上下同除以cos^3(α),得:
    tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
    sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
    =2sinαcos^2(α)+(1-2sin^2(α))sinα
    =2sinα-2sin^3(α)+sinα-2sin^3(α)
    =3sinα-4sin^3(α)
    cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
    =(2cos^2(α)-1)cosα-2cosαsin^2(α)
    =2cos^3(α)-cosα+(2cosα-2cos^3(α))
     (责任编辑:admin)